Tag: Agent Marketplace

  • Tips and Tricks: Agent Marketplace

    In past posts, we’ve discussed the process of creating agents from scratch. While this is straightforward, there’s a good chance that the agent you need has already been built by someone else. The Agent Marketplace is a library of pre-made agents, allowing you to quickly find and integrate the right one into your team.

    To add an agent from the Marketplace, navigate to Manage Teams, select your desired team, and then click on Agent Marketplace in the left menu.

    The Agent Marketplace is organized into categories based on the agents’ areas of expertise. Browse through these categories to find an agent that matches your needs. Each agent listing includes a description of its skills and persona. To add an agent, simply check the box next to its name. You can select multiple agents at once—just be sure to click the Add Agents to Selected Teams button at the top of the page. This process helps you assemble a functional team without the effort of manually creating each agent.

    While this makes team-building seamless, what’s truly powerful is that Marketplace agents are more than static tools—they’re customizable templates. Once you’ve added an agent, you can refine its persona to better align with your specific objectives.

    For example, let’s say you’re assembling a software team to develop a cutting-edge AI product. You’ve added the Rubin agent, but its default persona is too general. You need this agent to specialize in AI development tools. Here’s how to tailor it:

    On the Manage Teams page, locate the Rubin agent in the Your Agents and Teams section. Click on the agent’s persona to edit it. Replace the default text with a more specialized persona, such as:

    As a Senior Software Designer with expertise in Artificial Intelligence, you will architect and develop advanced AI-driven solutions using state-of-the-art technologies. You will work with machine learning frameworks such as TensorFlow, PyTorch, and Scikit-learn, leveraging APIs like OpenAI’s GPT for AI-powered applications. Additionally, you’ll utilize NLP libraries such as spaCy and Hugging Face for language processing tasks. Expertise in cloud-based AI services (AWS SageMaker, Google Vertex AI, Azure AI) and big data platforms like Apache Spark and Kafka is crucial. Your role includes optimizing AI workflows, integrating intelligent automation into software applications, and guiding best practices for AI model deployment and scalability.

    You can also customize the agent’s name—which is useful if you plan to add multiple instances of the same base agent. Additionally, selecting a distinct color for the agent’s responses helps differentiate it in team interactions. To do this, click on the color square in the agent listing and choose a new highlight color. After finalizing your changes, always click Save Changes to apply them.

    The Agent Marketplace makes it incredibly easy to build high-performing teams in just a few clicks. Even better, its customization features ensure that your agents are perfectly aligned with your needs. In future posts, we’ll explore agents that integrate with external tools and discuss how to optimize their capabilities through persona refinement.

  • A Deep-dive into Agents: Tool Access

    An important feature of agents is their ability to utilize tools. Of course there are many examples of software components that use tools as part of their function, but what distinguishes agents is their ability to reason about when to use a tool, which tool to use and how to utilize the results.

    In this context, a ‘tool’ refers to a software component designed to execute specific functions upon an agent’s request. This broad definition includes utilities such as file content readers, web search engines, and text-to-image generators, each offering capabilities that agents can utilize in responding to queries from users or other agents.

    Sentienta agents can access tools through several mechanisms. The first is when an agent has been pre-configured with a specific set of tools. Several agents in the Agent Marketplace utilize special tools in their roles. For example, the Document Specialist agent (‘Ed’) which you can find in the Document and Content Access section, utilizes Amazon’s S3 to store and read files, tailoring its knowledge to the content you provide.

    Angie, another agent in the Document and Content Access category, enhances team discussions by using a search engine to fetch the latest web results. This is valuable for incorporating the most current data into a team dialog, addressing the typical limitation of LLMs, which lack up-to-the-minute information in their training sets.

    You have the flexibility to go beyond pre-built tools. Another option allows you to create custom tools or integrate third-party ones. If the tool you want to use exposes a REST API that processes structured queries, you can create an agent to call the API (see the FAQ page for more information). Agent ‘Ed’, mentioned earlier, employs such an API for managing files.

    Finally, Sentienta supports completely custom agents that embody their own tool use. You might utilize a popular agent framework such as LangChain, to orchestrate more complex functions and workflows. Exposing an API in the form we just discussed will let you integrate this more complex tool-use into your team. Check out the Developers page to see how you can build a basic agent in AWS Lambda. This agent doesn’t do much, but you can see how you might add specialized functions to augment your team’s capabilities.

    In each case, the power of agent tool-use comes from the agent deciding how to use the tool and how to integrate the tool’s results into the team’s dialog. Agents may be instructed by their team to use these tools, or they may decide alone when or if to use a tool.

    This too is a large subject, and much has been written by others on this topic (see for example here and here). We’ve touched on three mechanisms you can use in Sentienta to augment the power of your agents and teams.

    In a future post we’ll discuss how agents interact in teams and how you can control their interactions through tailored personas.